669 research outputs found

    A Framework for Worst-Case and Stochastic Safety Verification Using Barrier Certificates

    Get PDF
    This paper presents a methodology for safety verification of continuous and hybrid systems in the worst-case and stochastic settings. In the worst-case setting, a function of state termed barrier certificate is used to certify that all trajectories of the system starting from a given initial set do not enter an unsafe region. No explicit computation of reachable sets is required in the construction of barrier certificates, which makes it possible to handle nonlinearity, uncertainty, and constraints directly within this framework. In the stochastic setting, our method computes an upper bound on the probability that a trajectory of the system reaches the unsafe set, a bound whose validity is proven by the existence of a barrier certificate. For polynomial systems, barrier certificates can be constructed using convex optimization, and hence the method is computationally tractable. Some examples are provided to illustrate the use of the method

    Differentially Private Convex Optimization with Piecewise Affine Objectives

    Full text link
    Differential privacy is a recently proposed notion of privacy that provides strong privacy guarantees without any assumptions on the adversary. The paper studies the problem of computing a differentially private solution to convex optimization problems whose objective function is piecewise affine. Such problem is motivated by applications in which the affine functions that define the objective function contain sensitive user information. We propose several privacy preserving mechanisms and provide analysis on the trade-offs between optimality and the level of privacy for these mechanisms. Numerical experiments are also presented to evaluate their performance in practice
    corecore